Cross-Modal Metric Learning for AUC Optimization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterogeneous Metric Learning for Cross-Modal Multimedia Retrieval

Due to the massive explosion of multimedia content on the web, users demand a new type of information retrieval, called cross-modal multimedia retrieval where users submit queries of one media type and get results of various other media types. Performing effective retrieval of heterogeneous multimedia content brings new challenges. One essential aspect of these challenges is to learn a heteroge...

متن کامل

CMML: a New Metric Learning Approach for Cross Modal Matching

This paper proposes a new approach for Cross Modal Matching, i.e. the matching of patterns represented in different modalities, when pairs of same/different data are available for training (e.g. faces of same/different persons). In this situation, standard approaches such as Partial Least Squares (PLS) or Canonical Correlation Analysis (CCA), map the data into a common latent space that maximiz...

متن کامل

Multi-Modal Distance Metric Learning

Multi-modal data is dramatically increasing with the fast growth of social media. Learning a good distance measure for data with multiple modalities is of vital importance for many applications, including retrieval, clustering, classification and recommendation. In this paper, we propose an effective and scalable multi-modal distance metric learning framework. Based on the multi-wing harmonium ...

متن کامل

Cross-Modal Manifold Learning for Cross-modal Retrieval

This paper presents a new scalable algorithm for cross-modal similarity preserving retrieval in a learnt manifold space. Unlike existing approaches that compromise between preserving global and local geometries, the proposed technique respects both simultaneously during manifold alignment. The global topologies are maintained by recovering underlying mapping functions in the joint manifold spac...

متن کامل

Efficient AUC Optimization for Classification

In this paper we show an efficient method for inducing classifiers that directly optimize the area under the ROC curve. Recently, AUC gained importance in the classification community as a mean to compare the performance of classifiers. Because most classification methods do not optimize this measure directly, several classification learning methods are emerging that directly optimize the AUC. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems

سال: 2018

ISSN: 2162-237X,2162-2388

DOI: 10.1109/tnnls.2017.2769128